Lambda-structure on Grothendieck groups of Hermitian vector bundles

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grothendieck Groups of Poisson Vector Bundles

A new invariant of Poisson manifolds, a Poisson K-ring, is introduced. Hypothetically, this invariant is more tractable than such invariants as Poisson (co)homology. A version of this invariant is also defined for arbitrary algebroids. Basic properties of the Poisson K-ring are proved and the Poisson K-rings are calculated for a number of examples. In particular, for the zero Poisson structure ...

متن کامل

Grothendieck Groups of Bundles on Varieties over Finite Fields

Let X be an irreducible, projective variety over a finite field, and let A be a sheaf of rings on X. In this paper, we study Grothendieck groups of categories of vector bundles over certain types of ringed spaces (X,A). Mathematics Subject Classifications (2000): 11-XX, 19-XX, 14-XX, 13-XX.

متن کامل

Deformation Quantization of Hermitian Vector Bundles

Motivated by deformation quantization, we consider in this paper -algebras A over rings C = R(i), where R is an ordered ring and i = −1, and study the deformation theory of projective modules over these algebras carrying the additional structure of a (positive) A-valued inner product. For A = C(M), M a manifold, these modules can be identified with Hermitian vector bundles E overM . We show tha...

متن کامل

Hermitian Vector Bundles and Extension Groups on Arithmetic Schemes. I. Geometry of Numbers

We define and investigate extension groups in the context of Arakelov geometry. The “arithmetic extension groups” d ExtiX(F,G) we introduce are extensions by groups of analytic types of the usual extension groups ExtX(F,G) attached to OX -modules F and G over an arithmetic scheme X. In this paper, we focus on the first arithmetic extension group d Ext1X(F,G) — the elements of which may be descr...

متن کامل

Hermitian Vector Bundles and Extension Groups on Arithmetic Schemes. Ii. the Arithmetic Atiyah Extension

In a previous paper [BK07], we have defined arithmetic extension groups in the context of Arakelov geometry. In the present one, we introduce an arithmetic analogue of the Atiyah extension, that defines an element — the arithmetic Atiyah class — in a suitable arithmetic extension group. Namely, if E is a hermitian vector bundle on an arithmetic scheme X, its arithmetic Atiyah class b at(E) lies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2001

ISSN: 0021-2172,1565-8511

DOI: 10.1007/bf02809904